BASIC SIMPLE TYPE THEORY

J. Roger Hindley
University of Wales, Swansea

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge CB2 1RP, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, United Kingdom
40 West 20th Street, New York, NY 10011-4211, USA

10 Stamford Road, Oakleigh, Melbourne 3166, Australia

(© Cambridge University Press 1997

This book is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without

the written permission of Cambridge University Press.

First published 1997
Typeset in 10/13 point Times
A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data

Hindley, J. Roger.
Basic simple type theory / J. Roger Hindley.
p. cm. — (Cambridge tracts in theoretical computer science ; 42)
Includes bibliographical references and index.
ISBN 0 521 46518 4
1. Programming languages (Electronic computers) 2. Type theory.
1. Title. II. Series.
QAT76.7.H55 1996
005.13—dc20 95-9058 CIP

ISBN 0 521 46518 4 hardback

Transferred to digital printing 2002

Contents

Introduction

1 The type-free A-calculus
1A A-terms and their structure
1B B-reduction and f-normal forms
1C - and fn-reductions
1D Restricted A-terms

2 Assigning types to terms
2A The system TA4;
2B The subject-construction theorem
2C Subject reduction and expansion
2D The typable terms

3 The principal-type algorithm
3A Principal types and their history
3B Type-substitutions
3C Motivating the PT algorithm
3D Unification
3E The PT algorithm

4 Type assignment with equality
4A The equality rule
4B Semantics and completeness

5 A version using typed terms
SA Typed terms
5B Reducing typed terms
5C Normalization theorems

6 The correspondence with implication
6A Intuitionist implicational logic
6B The Curry-Howard isomorphism
6C Some weaker logics
6D Axiom-based versions

7 The converse principal-type algorithm
7A The converse PT theorems
7B Identifications

vii

page ix
1

1

4

7

10

12
12
20
24
27

30
31
34
38
40
44

52
52
57

63
63
67
71

74
74
79
85
88

93
93
95

viii
7C
D

Contents

The converse PT proof
Condensed detachment

8 Counting a type’s inhabitants

8A
8B
8C
8D
8E
8F

Inhabitants

Examples of the search strategy

The search algorithm

The Counting algorithm

The structure of a nf-scheme
Stretching, shrinking and completeness

9 Technical details

9A
9B
9C
SD
9E
9F

The structure of a term

Residuals

The structure of a T A,-deduction

The structure of a type

The condensed structure of a type
Imitating combinatory logic in A-calculus

Answers to starred exercises

Bibliography

Table of principal types

Index

96
102

108
108
114
118
124
127
132

140
140
144
148
151
153
157

161
169
177
179

1

The type-free A-calculus

The A-calculus is a family of prototype programming languages invented by a
logician, Alonzo Church, in the 1930’s. Their main feature is that they are higher-
order ; that is, they give a systematic notation for operators whose input and output
values may be other operators. Also they are functional, that is they are based on
the notion of function or operator and include notation for function-application and
abstraction.

This book will be about the simplest of these languages, the pure A-calculus, in
which A-terms are formed by application and abstraction from variables only. No
atomic constants will be allowed.

1A A-terms and their structure

1A1 Definition (A-terms) An infinite sequence of term-variables is assumed to be
given. Then linguistic expressions called A-terms are defined thus:

(i) each term-variable is a A-term, called an atem or atomic term;
(ii) if M and N are A-terms then (MN) is a A-term called an application;
(iii) if x is a term-variable and M is a A-term then (Ax-M) is a A-term called an
abstract or a A-abstract.

A composite A-term is a A-term that is not an atom.
1A1.1 Notation Term-variables are denoted by “u”, “v”, “w”, “x”, “y”, “z”, with or
without number-subscripts. Distinct letters denote distinct variables unless otherwise
stated.

Arbitrary A-terms are denoted by “L”, “M”, “N”, “P”, “Q”, “R”, “S”, “T”, with
or without number-subscripts. For “A-term” we shall usually say just “term”.

Syntactic identity: “M = N” will mean that M is the same expression as N (if M
and N are terms or other expressions). But for identity of numbers, sets, etc. we
shall say “=" as usual.

Parentheses and repeated A’s will often be omitted in such a way that, for example,

ixyzM = (Ax-(Ay-(Az-M))), MNPQ = (((MN)P)Q).

(The rule for restoring parentheses omitted from MNPQ is called association to the

left.)

2 I The type-free A-calculus

1A2 Definition The length, |M|, of a A-term M is the number of occurrences of
variables in M ; in detail, define

(x| =1, |MN|=[M|+|N|, [Ax-M|=1+[M]|.
1A2.1 Example |(Ax-yx)(Az-x)| = 5.

1A3 Definition (Subterms) The subterms of a term M are defined by induction on
|M| as follows:

(i) an atom is a subterm of itself;
(ii) if M = Ax- P, its subterms are M and all subterms of P;
(iii) if M = P;P,, its subterms are all the subterms of Py, all those of P5, and M
itself.

1A3.1 Example If M = (Ax yx)(Az-x(yx)) its subterms are x, y, yx, ix'yx, x(yx),
Az-x(yx) and M itself. (But not z.)

1A4 Notation (Occurrences, components) A subterm of a term M may have more
than one occurrence in M; for example the term

(Ax-yx)(Az-x(yx))

contains two occurrences of yx and three of x. The precise definition of “occurrence”
is written out in 9A2, but the reader who already has a good intuitive idea of the
occurrence-concept will go a long way without needing to look at this definition.

In this book occurrences will be underlined to distinguish them from subterms;
for example we may say

“Let P be any occurrence of P in M”.

An occurrence of Ax will be called an abstractor, and the occurrence of x in it
will be called a binding occurrence of x.

All the occurrences of terms in M, other than binding occurrences of variables,
will be called components of M.

1AS Definition (Body, scope, covering abstractors) Let Ax-P be a component of a
term M. The displayed component P is called the body of Ax-P or the scope of the
abstractor)x.

The covering abstractors of a component R of M are the abstractors in M whose
scopes contain R.

1A6 Definition (Free, bound) A non-binding variable-occurrence x in a term M is
said to be bound in M iff it is in the scope of an occurrence of Ax in M, otherwise
it is free in M.

A variable x is said to be bound in M iff M contains an occurrence of Ax; and x
is said to be free in M iff M contains a free occurrence of x. The set of all variables
free in M is called

FV(M).

1A A-terms and their structure 3

1A6.1 Warning Two distinct concepts have been defined here, free/bound occur-
rences and free/bound variables. A variable x may be both free and bound in M,
for example if M = x(4x-x), but a particular occurrence of x in M cannot be both
free and bound.

Also note that x is said to be bound in Ax-y even though its only occurrence there
is a binding one.

1A7 Definition (Substitution) Define [N/x]M to be the result of substituting N for
each free occurrence of x in M and making any changes of bound variables needed
to prevent variables free in N from becoming bound in [N/x]M. More precisely,
define for all N, x, P, Q and all y #£ x

(@) [N/x]x = N,

(i) [N/x]y =y,

(i) [N/x}(P,Q) = (([N/x]P)IN/x]1Q)),

(iv) [N/x](Ax-P) = Jx-P,

(v) [N/x)(4y-P) = Ay-P if x ¢ FV(P),
(vi) [N/x}(Ay-P) = Ay [N/x]P if xe€ FV(P)and y & FV(N),
(vii) [N/x](Ay-P) = Jz:[N/x}{z/ylP if x€ FV(P)and y € FV(N).

(In (vii) z is the first variable in the sequence given in 1Al which does not occur
free in NP.)

1A7.1 Notation (Simultaneous substitution) For any Ny,...,N, and any distinct
X1,...,Xn, the result of simultaneously substituting Ny for xj, N, for x»,... in M, and
changing bound variables to avoid clashes, is defined similarly to [N/x]M. (For a
neat definition see Stoughton 1988 §2.) It is called

[N1/X1,...,N,,/X,,]M.

1A8 Definition (Changing bound variables, a-conversion) Let y ¢ FV(M); then we
say

(@) Ax-M =4 Ay-[y/x]M,

and the act of replacing an occurrence of Ax-M in a term by Ay-[y/x]M is called a

change of bound variables. If P changes to Q by a finite (perhaps empty) series of
changes of bound variables we say P a-converts to Q or

P=,0.

1A8.1 Note Some basic lemmas about a-conversion and substitution are given in
HS 86 §1B. Two simple properties that will be needed here are

i) P=0Q = |P|=10Q],
(i) P=,Q = FV(P)=FV(Q).

1A9 Definition A term M has a bound-variable clash iff M contains an abstractor
Ax and a (free, bound or binding) occurrence of x that is not in its scope.

4 1 The type-free A-calculus
Examples of terms with bound-variable clashes are
x(Ax'N), Ax-Ay-Ax-N, (ix-P)ix-Q).

We shall be mainly interested in terms without such clashes.
1A9.1 Lemma Every term can be a-converted to a term without bound-variable clashes.
Proof By the lemmas in HS 86 §1B. O

1A10 Definition (Closed terms) A closed term or combinator is a term in which no
variable occurs free.

1A10.1 Example The following closed terms will be used in examples and results
throughout this book.

B = JAxyz-x(yz), B' = JAxyz-y(xz),

C = JAxyz-xzy, I = ixx,

K = ixy-x, S = IAxyz-xz(yz),

W o= Axyxyy, Y = x4y x(yy) 4y x(yy)),

0 = Axyy, 1 = Axy-xy,

o= Axy-x"y = Axy-x(x(...(xy)...)) (nx’s applied to y) .

(Y is Curry’s fixed-point combinator, see HS 86 Ch.3 §3B for background; the terms
n are the Church numerals for n=0,1,2,..., see HS 86 Def. 4.2)

1B p-reduction and f-normal forms

This section outlines the definition and main properties of the term-rewriting pro-
cedure called B-reduction. Further details can be found in many other books, for
example HS 86 Chs. 1-6 and Barendregt 1984 Chs. 3 and 11-14.

1B1 Definition (B-contraction) A B-redex is any term (Ax-M)N; its contractum is
[N/x]M and its re-write rule is

(Ax'M)N b1p [N/x]M.

Iff P contains a B-redex-occurrence R = (Ax-M)N and @ is the result of replacing
this by [N/x]M, we say P B-contracts to Q (P >3 Q) and we call the triple (P,R, Q)
a B-contraction of P.

1B1.1 Lemma PvrigQ = FV(P)2FV(Q).

1B2 Definition (B-reduction) A B-reduction of a term P is a finite or infinite sequence
of B-contractions with form

(1) <P1331’Q1>’ <P27_R.2’Q2>’
where P, =, P and Q; =, Piyy for i = 1,2,.... (The empty sequence is allowed.) We
say a finite reduction is from P to Q iff either it has n > 1 contractions and @, =, Q

1B f-reduction and B-normal forms 5

or it is empty and P =, Q. A reduction from P to @ is said to terminate or end at
Q. Iff there is a reduction from P to Q we say P B-reduces to Q, or

PD/;Q.

Note that a-conversions are allowed in a -reduction.

1B3 Definition The length of a B-reduction is the number of its f-contractions (finite
or o). A reduction with maximal length is one that continues as long as there are
redexes to contract (i.e. one that either is infinite or ends at a term containing no
redexes).

1B4 Definition (B-conversion) Iff we can change P to Q by a finite sequence of
B-reductions and reversed S-reductions, we say P B-converts to Q, or P is B-equal
to Q, or

P =50

A reversed f-reduction is called a -expansion.

1B4.1 Exercise For every term F let Xr = YF where Y is the fixed-point combinator
defined in 1A10.1; show that

FXr = Xr.

1B5 Church-Rosser Theorem for § (i) If Mg P and M >y Q (see Fig. 1B5a) then
there exists T such that

P g T, QDB T.

(il) If P =p Q (see Fig. 1B5b) then there exists T such that
PpopT, QvpT.

Proof of 1B5 (i) See HS 86 Appendix 1 or Barendregt 1984 §3.2. (ii) This is deduced
from (i) as suggested in Fig. 1B5b. .

\‘ }"

El
Fig. 1B5a.

6 1 The type-free A-calculus

NN

. ’ N ’

{.#
T
Fig. 1B5b.

1B6 Definition (f-normal forms) A B-normal form is a term that contains no f8-
redexes. The class of all f-nf’s is called B-nf We say a term M has f-nf N
iff

Mpg N and N € f-nf.

1B6.1 Note Roughly speaking, a reduction can be thought of as a computation and
a f-nf as its result. One main aim when designing a type-theory is to give it the
property that every computation can be pursued to a result if the operator wishes,
ie. that every term with a type has a f-nf. This gives normal forms even more
significance in a type-theory than they already have in a type-free theory.

(Terms in general do not necessarily have f-nf’s of course. The simplest term
without one is (Ax-xx)(Ax-xx).)

1B7 NF-Uniqueness Lemma Modulo «-conversion, a term M has at most one B-nf.
Proof An easy application of the Church-Rosser theorem. O
IB7.1 Notation If M has a §-nf it will be called M.

1B8 Definition (Leftmost reductions) The leftmost B-redex-occurrence in a term P is
the f-redex-occurrence whose leftmost parenthesis is to the left of all the parentheses
in all the other f-redex-occurrences in P.

The leftmost f-reduction of a term P is a f-reduction of P with maximal length,
say

(PI’BI’Q1>’ (PZ,BZaQ2>9 ceey
such that R; is the leftmost f-redex-occurrence in P; for all i > 1 (and P; a-converts

to P and Py a-converts to Q; for all i > 1).

1B9 Leftmost-reduction Theorem A term M has a B-nf Mxp iff the leftmost B-
reduction of M is finite and ends at Mxg.

1C n- and Bn-reductions 7

Proof See Curry and Feys 1958 §4E Cor. 1.1. (In fact this result is an immediate
corollary of a slightly deeper result called the standardization theorem; for the latter
see Curry and Feys 1958 §4E Thm. 1 or Barendregt 1984 Thm. 11.4.7, or the
particularly clear proof in Mitschke 1979 Thm. 7.) 0

1B9.1 Example The leftmost reduction of the fixed-point combinator Y in 1A10.1 is
easily seen to be infinite, so Y has no f-nf.

1B9.2 Note (Seeking f-normal forms) The leftmost reduction of a term M is com-
pletely determined by M, so by 1B9 it gives an algorithm for seeking Maxg: if Mxg
exists the leftmost reduction of M will end at Mg, and if not, this reduction will
be infinite. Of course this algorithm does not decide in finite time whether M has a
B-nf; and in fact this cannot be done, as the set of terms with normal forms is not
recursive. (See e.g. HS 86 Cor 5.6.2 or Barendregt 1984 Thm. 6.6.5.)

1B10 Lemma (Structure of a f-normal form) Every f-nf N can be expressed
uniquely in the form

(i) N=Aix;...xmyN;...N, (m=>0,n=>0),
where Ni,...,Ny, are B-nf’s. And if N is closed then y € {x1,...,Xm}.

Proof Easy induction on |N|. Note the uniqueness. I

1B10.1 Note The following special cases of 1B10 are worth mention:

m=n=0: N =y (an atom);
m=0n>1: N = yN;...N, (an application);
m>1: N = Ix1...xn'P (an abstract);
m>1,n=0. N = Axj...xn'y (called an abstracted atom).

1B10.2 Exercise Prove that §-nf is the smallest class of terms satisfying (i) and (ii)
below:

(i) all variables are in f-nf;
(ii) for all m,n > 0 with m+n > 1, and all x1,..., X, y,

Ni,...,N, € f-nf = Ax;...Xn yNi...N, € B-nf.

1C n- and fn-reductions

This section sketches the most basic properties of #- and f#-reductions. For more
details see HS 86 Ch. 7 and Barendregt 1984 §15.1.
1C1 Definition (-reduction, n-conversion) An n-redex is any term Ax-Mx with
x ¢ FV(M); its re-write rule is

Ax-Mx b1, M.

Its contractum is M. The definitions of n-contracts, y-reduces (>,), n-converts (=),
etc. are like those of the corresponding -concepts in 1B.

8 1 The type-free A-calculus

1C2 Lemma All n-reductions are finite; in fact an n-reduction P v, Q must have
length < |P|/2.

Proof Each n-contraction reduces |P| to |P| —2. O

1C3 Definition The y-family {P}, of a term P is the set of all terms Q such that
Py, 0.

1C3.1 Note By 1C2, {P}, is finite.

1C4 Church-Rosser Theorem for # If P =, Q then there exists T such that

Pr, T, oo, T.
Proof Straightforward. (Barendregt 1984 Lemma 3.3.7.) |
1CS Definition (Bn-reduction, By-conversion) A Bn-redex is any f- or n-redex. The
definitions of By-contracts, py-reduces (>g,), py-converts (=g,) are like those of the
corresponding B-concepts in 1B.

1C5.1 Lemma Pwvg, @ = FV(P)=2FV(Q).

1C5.2 Note A PBny-reduction may have a-steps as well as § and . The following
theorem says that all its #-steps can be postponed to the end of the reduction.

1C6 y-Postponement Theorem If M v, N then there exists a term P such that

M vg P >, N.
Proof Nederpelt 1973 Thm. 7.28 or Barendregt 1984 Cor. 15.1.6. a

1C7 Commuting Lemma If Mg P and M >, Q (see Fig. 1C7a) then there exists
a term T such that

P, T, gvp T.

Proof Barendregt 1984 Lemma 3.3.8. O

1C7.1 Corollary If Mvp, P and M g Q then there exists a term T such that
P bg T, QDB" T.

Proof By 1BS, 1C4 and 1C7. a

1C8 Church-Rosser Theorem for By (i) If M g, P and M v, Q then there exists
T such that

Prpy, T, Ovpy T.

1C #n- and By-reductions 9

M
®
VRN
P .\ I. Q
n 4 £ B
o
3T
Fig. 1C7a.

(il) If P =p, Q then there exists T such that

P gy T, Qbﬂ,, T.
Proof (i) From 1BS5, 1C4, 1C6, 1C7. (ii) From (i) as in Fig. 1B5b. O

1C9 Definition (By- and y-normal forms) A By-normal form (Pn-nf) is a term
without Bn-redexes. The class of all fy-nf’s is called Bn-nf. We say M has fy-nf N’
iff

Mg, N, N € Bn-nf.

Similarly we define n-normal form, n-nf, and M has n-nf N.

1C9.1 Notation The fn-nf and n-nf of a term M are unique modulo =, by the
Church-Rosser theorems for S5 and #; they will be called

M*ﬂ,,, M*,'.
1C9.2 Lemma (i) An n-reduction of a f-nf cannot create new f-redexes; more precisely

M e B-nf and M>, N = N € B-nf.

(il) For every M, Mxg, is the n-nf of Mxg; i.e. Mg, = (Mxg)s,.

Proof (i) It is easy to check all possible cases. (ii) By 1C2, M+ has an n-nf (Msg)x,,
and this is a fn-nf by (i). O

1C9.3 Corollary If N is a B-nf then all the members of its n-family are B-nf’s and
exactly one of them is a Bn-nf, namely Nx,.

1C9.4 Lemma A term has a Bn-nf iff it has a f-nf.

Proof For “only if”, see Curry et al. 1972 §11E Lemma 13.1 or Barendregt 1984
Cor. 15.1.5. For “if”, see 1C9.2. (By the way, do not confuse the present lemma with
a claim that a term is in B-nf iff it is in Bn-nf, which is of course false!) d

10 1 The type-free A-calculus

1C9.5 Note (Seeking fn-normal-forms) To seek for Mxg,, reduce M by its leftmost
B-reduction. If this is finite, it must end at M+, and then the leftmost #-reduction
will reach an n-nf in < [Mxg |/2 steps, by 1C2. If the leftmost B-reduction of M is
infinite, Mxg does not exist and hence by 1C9.4 neither does Mxg,. Of course this
procedure does not decide in finite time whether Mg, exists; see the comment in
1B9.2.

1D Restricted A-terms

The following restricted classes of A-terms will play a role later in the correspondence
between type-assignment and propositional logic.

1D1 Definition (AI-terms) A A-term P is called a Al-term iff, for each subterm with
form Ax-M in P, x occurs free in M at least once.

ID1.1 Note The Al-terms are the terms that were originally studied by Church.
They have the property that if a Al-term has a normal form, so have all its
subterms (Church 1941 §7, Thm. 7 XXXII). Church restricted his system to Al-terms
because he regarded terms without normal forms as meaningless and preferred that
meaningful terms did not have meaningless subterms. The Al-terms are discussed in
detail in Barendregt 1984 Ch. 9.

The standard example of a non-Al-term is K = Axy-x = Ax-(Ay-x).

1D1.2 Notation Sometimes unrestricted A-terms are called AK-terms, and the unre-
stricted A-calculus the AK-calculus, to contrast with Al-terms and to emphasise the
absence of restriction.

1D2 Definition (BCKA-terms) A BCKi-term is a A-term P such that

(i) for each subterm Ax-M of P, x occurs free in M at most once,
(i1) each free variable of P has just one occurrence free in P.

1D2.1 Examples Of the terms in the list in 1A10.1 the following are BCKA-terms:

B = Axyz-x(yz), B' = Axyz-y(xz), C = lxyz-xzy,
I = ix'x, K = Ilxyx n = Axy-x"y (n=0or 1).
And the following are not:
S = Ixyz-xz{yz), = Axy-xyy,
Y = x(Ay-x(yy)(Ay x(yy)), o= Axyx"y(nx2)

1D2.2 Lemma The class of all BCK-terms is closed under abstraction, i.e. if M is a
BCKA-term then so is Ax*M for every variable x.

Proof By 1D2(ii), x occurs free at most once in M. O

1D2.3 Notes (i) In contrast to the above lemma the class of all Al-terms is only
closed under abstractions Ax-M such that x occurs free in M.

1D Restricted A-terms 11

(i1) The BCK A-terms are so called because the closed terms in this class correspond
to combinations of three combinators called “B”, “C” and “K” in combinatory logic
(see 9F for details). They have also sometimes been called linear A-terms but this
name is nowadays usually applied to the following class.

1D3 Definition (BCIi-terms) A BCli-term or linear A-term is a A-term P such that

(i) for each subterm Ax-M of P, x occurs free in M exactly once,
(ii) each free variable of P has just one occurrence free in P.

Clearly every BCIA-term is a BCKA-term, but the BCKA-term K is not a BCIA-
term; in fact a term is a BCIA-term iff it is both a Al-term and a BCKA-term. The
closed BCIA-terms correspond to combinations of the combinators called B, C and
I in combinatory logic; details are in 9F.

1D4 Lemma Each of the three classes (Al-terms, BCKA-terms and BCIA-terms) is
closed under Bn-reduction, i.e. every term obtained by fn-reducing a member of the
class is also in the class.

Proof Straightforward. O

1D5 Definition A S-contraction (Ax-M)N > [N/x]M is said to cancel N iff x does
not occur free in M ; it is said to duplicate N iff x has at least two free occurrences
in M.

A B-reduction is non-duplicating iff none of its contractions duplicates; it is
non-cancelling iff none cancels.

1D6 Lemma Every f-reduction of a AI-term is non-cancelling; every one of a BCKA-
term is non-duplicating, and every one of a BCIA-term is both.

